TOP カテ一覧 スレ一覧 100〜終まで 2ch元 削除依頼
ピタゴラス数をなんと 〜荒らされたので立て直しました〜
【自称数学者】三鷹の大類昌俊 Part8【つどい出禁】
【地底】大阪・東北・名古屋・九州大学スレッド
ジョン・ナッシュ氏が交通事故で死去
大学学部レベル質問スレ 13単位目
現代数学の系譜11 ガロア理論を読む25
フェルマー最終定理について
現代数学の系譜 工学物理雑談 古典ガロア理論も読む46
ベジェ曲線による作図法
数学者ほどかっこいい職業あんの?

■初等関数研究村■


1 :2019/06/15 〜 最終レス :2020/04/15
初等関数(しょとうかんすう、英: Elementary function)とは、
実数または複素数の1変数関数で、代数関数、指数関数、対数関数、
三角関数、逆三角関数および、それらの合成関数を作ることを
有限回繰り返して得られる関数のことである

ガンマ関数、楕円関数、ベッセル関数、誤差関数などは初等関数でない
初等関数のうちで代数関数でないものを初等超越関数という
双曲線関数やその逆関数も初等関数である

初等関数の導関数はつねに初等関数になる

2 :
縦3マス、横4マスの12マスのうちランダムに選ばれた
2マスにそれぞれ宝が眠っている
AEIBFJ…の順で縦に宝を探していく方法をとるP君と、
ABCDEFGH…の順で横に宝を探していく方法をとるQ君が、
同時に地点Aから探索を開始した
どっちの方が有利?

ABCD
EFGH
I JK L

P1st Q1st even
[1,] 0 0 1
[2,] 4 5 6
[3,] 26 27 13
[4,] 84 83 23
[5,] 203 197 35
[6,] 413 398 50
[7,] 751 722 67
[8,] 1259 1210 87
[9,] 1986 1910 109
[10,] 2986 2875 134

完全追尾型多項式が完成しました

宝の個数は2

P1st={12n^4+28n^3-42n^2-52n-3(-1)^n+51}/48

Q1st={12n^4+20n^3-18n^2-20n-3(-1)^n+3}/48

even={10n^2+8n+(-1)^n-9}/8

■Wolframに入力すると既約分数表示になるので御注意

P1st/Q1st

=8(n-1){(n-2)n-6}/{2n(n+2)(6n^2-2n-5)-3(-1)^n+3}+1

3 :
P1stとQ1stは、『宝一つの時の自陣当たり数』の二乗と
それぞれの差分を表す関数の和で求められる

■P1stを求める

宝一つの時の自陣当たり数

n(n+1)/2-1 ……@

P1stは@^2と差分の和

差分は0 0 1 3 7 13 22 34 50 70 95 125 161 203
252 308 372 444 525 615……

それを表す関数

(4n^3-6n^2-4n-3(-1)^n+3)/48 ……A

計算知能で@^2+Aを入力すると

∴P1st={12n^4+28n^3-42n^2-52n-3(-1)^n+51}/48

■Q1stを求める

宝一つの時の自陣当たり数

n(n+1)/2-1 ……@

Q1stは@^2と差分の和

差分は0 1 2 2 1 -2 -7 -15 -26 -41 -60 -84 -113
-148 -189……

それを表す関数は 

(-4n^3+18n^2+28n-3(-1)^n-45)/48 ……B

計算知能で@^2+Bを入力すると

∴Q1st={12n^4+20n^3-18n^2-20n-3(-1)^n+3}/48

■evenを求める

evenは、n(n+1)-1と同着数の和

同着数は1 2 4 6 9 12 16 20 25……

これを表す関数は {2n^2-1+(-1)^(n)}/8 ……C

n(n+1)-1 ……D

計算知能でC+Dを入力すると

∴even={10n^2+8n+(-1)^n-9}/8

4 :
P1st Q1st even
[1,] 0 0 1
[2,] 4 5 6
[3,] 26 27 13
[4,] 84 83 23
[5,] 203 197 35
[6,] 413 398 50
[7,] 751 722 67
[8,] 1259 1210 87
[9,] 1986 1910 109
[10,] 2986 2875 134
[11,] 4320 4165 161
[12,] 6054 5845 191
[13,] 8261 7987 223
[14,] 11019 10668 258
[15,] 14413 13972 295
[16,] 18533 17988 335
[17,] 23476 22812 377
[18,] 29344 28545 422
[19,] 36246 35295 469
[20,] 44296 43175 519

Table[(12n^4+28n^3-42n^2-52n-3(-1)^n+51)/48,{n,1,20}]

Table[(12n^4+20n^3-18n^2-20n-3(-1)^n+3)/48,{n,1,20}]

Table[(10n^2+8n+(-1)^n-9)/8,{n,1,20}]

5 :
2×3の場合
宝:1個 同等
宝:2〜3個 長軸有利
宝:4〜6個 同等

□■■
□□■

短軸有利☆

Table[C(3,k-1)+C(1,k-1),{k,1,6}]
{2, 4, 3, 1, 0, 0}

長軸有利☆

Table[C(3,k-1)+C(2,k-1),{k,1,6}]
{2, 5, 4, 1, 0, 0}

同等☆

Table[C(5,k-1)+C(3,k-2)+C(1,k),{k,1,6}]
{2, 6, 13, 13, 6, 1}

2 * 3 [2] : 4 , 5 , 6
2 * 3 [3] : 3 , 4 , 13

6 :
> sapply(1:12,function(k) treasure0(3,4,k))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
短軸有利 5 26 73 133 167 148 91 37 9 1 0 0
長軸有利 5 27 76 140 176 153 92 37 9 1 0 0
同等 2 13 71 222 449 623 609 421 202 64 12 1

□■■■
□□■■
□□□■

短軸有利☆

Table[sum[C(2n-1+C(0,n-2),k-1),{n,1,5}],{k,1,12}]

長軸有利☆

Table[sum[C(2n-1+C(0,3mod n),k-1),{n,1,5}],{k,1,12}]

同等☆

Table[C(11,k-1)+C(9,k-2)+C(7,k-2)+C(1,k),{k,1,12}]

7 :
> sapply(1:20,function(k) treasure0(4,5,k))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
短軸有利 9 84 463 1776 5076 11249 19797 28057 32243 30095 22749
長軸有利 9 83 453 1753 5075 11353 20057 28400 32528 30250 22803
同等 2 23 224 1316 5353 16158 37666 69513 103189 124411 122408
[,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
短軸有利 13820 6656 2486 695 137 17 1 0 0
長軸有利 13831 6657 2486 695 137 17 1 0 0
同等 98319 64207 33788 14114 4571 1106 188 20 1

4×5の場合
宝:1個 同等
宝:2〜5個 短軸有利
宝:6〜13個 長軸有利
宝:14〜20個 同等

□■■■■
□□■■■
□□□■■
□□□□■

短軸有利☆

Table[sum[C(2n-1+C(0,n-2)+C(1,n-4),k-1),{n,1,9}],{k,1,20}]

長軸有利☆

Table[sum[C(2n-1+C(0,3 mod n)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]

同等☆

Table[C(19,k-1)+C(17,k-2)+C(15,k-2)+C(13,k-2)+C(8,k-2)+C(1,k),{k,1,20}]

8 :
5×6の場合
宝:1個 同等
宝:2〜8個 短軸有利
宝:9〜21個 長軸有利
宝:22〜30個 同等

□■■■■■
□□■■■■
□□□■■■
□□□□■■
□□□□□■

短軸有利☆

Table[sum[C(2n-1+C(0,n-2 mod7)+3C(0,n-4)+C(1,n-7),k-1),{n,1,14}],{k,1,30}]

長軸有利☆

Table[sum[C(2n-1+C(0,30mod n)-C(0,n-2)-2C(0,n-5)-C(1,n-8),k-1),{n,1,14}],{k,1,30}]

同等☆

Table[sum[C(2n-1-3C(1,n-9),k-2),{n,9,14}],{k,1,30}]+Table[C(29,k-1)+C(1,k),{k,1,30}]

5 * 6 [2] : 203 , 197 , 35
5 * 6 [3] : 1801 , 1727 , 532
5 * 6 [4] : 11418 , 11008 , 4979
5 * 6 [5] : 55469 , 54036 , 33001
5 * 6 [6] : 215265 , 211894 , 166616
5 * 6 [7] : 685784 , 680768 , 669248
5 * 6 [8] : 1827737 , 1825076 , 2200112
5 * 6 [9] : 4130886 , 4139080 , 6037184
5 * 6 [10] : 7995426 , 8023257 , 14026332
5 * 6 [11] : 13346984 , 13395944 , 27884372
5 * 6 [12] : 19312228 , 19372871 , 47808126
5 * 6 [13] : 24301031 , 24358063 , 71100756
5 * 6 [14] : 26642430 , 26684251 , 92095994
5 * 6 [15] : 25463979 , 25488051 , 104165490

9 :
6×7の場合
宝:1個 同等
宝:2〜12個 短軸有利
宝:13〜31個 長軸有利
宝:32〜42個 同等

□■■■■■■
□□■■■■■
□□□■■■■
□□□□■■■
□□□□□■■
□□□□□□■

短軸有利☆

Table[sum[C(2n-1+C(0,n-2)+3C(0,n-4)+5C(0,n-7)+C(1,n-11)+C(1,n-13),k-1),{n,1,20}],{k,1,42}]

長軸有利☆

Table[sum[C(2n-1+C(0,30mod n)-C(0,n-2 mod12)-2C(0,n-5)-3C(0,n-9)-C(1,n-12),k-1),{n,1,20}],{k,1,42}]

同等☆

Table[sum[C(2n-1-3C(1,n-14)-3C(0,n-13)-8C(0,n-12),k-2),{n,12,20}],{k,1,42}]+Table[C(41,k-1)+C(1,k),{k,1,42}]

6 * 7 [2] : 413 , 398 , 50
6 * 7 [3] : 5328 , 5070 , 1082
6 * 7 [4] : 49802 , 47536 , 14592
6 * 7 [5] : 361511 , 347863 , 141294
6 * 7 [6] : 2125414 , 2063677 , 1056695
6 * 7 [7] : 10409448 , 10191338 , 6377542
6 * 7 [8] : 43330401 , 42718984 , 31980800
6 * 7 [9] : 155608539 , 154251591 , 136031680
6 * 7 [10] : 487675145 , 485359843 , 498407985
6 * 7 [11] : 1345799489 , 1343074613 , 1591687274
6 * 7 [12] : 3293603485 , 3292560662 , 4471952741
6 * 7 [13] : 7189071864 , 7193592264 , 11136067152
6 * 7 [14] : 14059388483 , 14074085203 , 24726755394
6 * 7 [15] : 24725171790 , 24753058778 , 49194197048
6 * 7 [16] : 39214892052 , 39255073592 , 88039755958
6 * 7 [17] : 56218716543 , 56265877603 , 142177333010
6 * 7 [18] : 72972907098 , 73019303768 , 207704910184
6 * 7 [19] : 85862179541 , 85900953866 , 275012177393
6 * 7 [20] : 91643393740 , 91671084359 , 330477129321
6 * 7 [21] : 88747779232 , 88764701159 , 360745394049

10 :
7×8の場合
宝:1個 同等
宝:2〜16個 短軸有利
宝:17〜43個 長軸有利
宝:44〜56個 同等

□■■■■■■■
□□■■■■■■
□□□■■■■■
□□□□■■■■
□□□□□■■■
□□□□□□■■
□□□□□□□■

短軸有利☆

Table[sum[C(2n-1+C(0,n-2 mod18)+3C(0,n-4)+3C(1,n-7)+7C(0,n-11)+C(1,n-16)+C(1,n-18),k-1),{n,1,27}],{k,1,56}]

長軸有利☆

Table[sum[C(2n-1+C(0,n-1 mod14)+C(0,n-3 mod18)+3C(1,n-5)+3C(1,n-9)-19C(0,n-14)-C(1,n-17)-C(1,n-19),k-1),{n,1,27}],{k,1,56}]

同等☆

Table[sum[C(2n-1-3C(1,n-20)-3C(1,n-18)-8C(1,n-16),k-2),{n,16,27}],{k,1,56}]+Table[C(55,k-1)+C(1,k),{k,1,56}]

11 :
7 * 8 [2] : 751 , 722 , 67
7 * 8 [3] : 13213 , 12546 , 1961
7 * 8 [4] : 169815 , 161494 , 35981
7 * 8 [5] : 1708176 , 1634573 , 477067
7 * 8 [6] : 14026034 , 13521709 , 4920693
7 * 8 [7] : 96716833 , 93921622 , 41278945
7 * 8 [8] : 571625198 , 558773693 , 290095184
7 * 8 [9] : 2940723248 , 2890925540 , 1744319612
7 * 8 [10] : 13327198939 , 13162957237 , 9116895304
7 * 8 [11] : 53717709609 , 53254225291 , 41930280380
7 * 8 [12] : 194070976396 , 192951568390 , 171360762514
7 * 8 [13] : 632475500322 , 630177011156 , 627260220922
7 * 8 [14] : 1869295969469 , 1865362789969 , 2070073204362
7 * 8 [15] : 5032748390589 , 5027434867987 , 6193066240064
7 * 8 [16] : 12389874719763 , 12385213035831 , 16873864084671
7 * 8 [17] : 27980641402960 , 27981556314178 , 42035336024662
7 * 8 [18] : 58125229289763 , 58139877526913 , 96062882957224
7 * 8 [19] : 111326498505381 , 111364943071921 , 201964537970498
7 * 8 [20] : 196977669970830 , 197048666795639 , 391587225396961
7 * 8 [21] : 322510102010304 , 322617018858127 , 701638985697449
7 * 8 [22] : 489306306855569 , 489444206271532 , 1163831929136799
7 * 8 [23] : 688690248074025 , 688846020744196 , 1789759515397979
7 * 8 [24] : 900050700996225 , 900206640621300 , 2554774361679750
7 * 8 [25] : 1092975958236546 , 1093115221856691 , 3388349400127275
7 * 8 [26] : 1233862233565383 , 1233973593552186 , 4178612556991503
7 * 8 [27] : 1295273249461927 , 1295353120172050 , 4794316279376103
7 * 8 [28] : 1264553645519991 , 1264605044607097 , 5119531910633352

12 :
宝一つの時の自陣当たり数

n(n+1)/2-1 

https://i.stack.imgur.com/3aEGX.png

大きな数字のところでは誤差があります

http://codepad.org/VN03aiqT

13 :
同等8 * 9 [18] : 14798849190259080
短軸8 * 9 [18] : 13325129660655316
長軸8 * 9 [18] : 13308110914669040

から誤差がある

14 :
■8x9マスで宝マックス72個テーブルも一瞬で表示

短軸有利☆

Table[sum[C(2n-1+C(0,n-2)+3C(0,n-4)+3C(1,n-7)+7C(0,n-11)+C(1,n-12)+9C(0,n-16)+C(1,n-22)+C(1,n-24)+C(1,n-26),k-1),{n,1,35}],{k,1,72}]

{35, 1259, 28901, 487245, 6460920, 70274262, 645084445, 5101533131, 35303844988,
216412209627, 1186682990705, 5867639936202, 26336848147168, 107913286582509,
405577089880106, 1403922286907797, 4491874681282838, 13325129660655319,
36749474808714593, 94449719219262517, 226689450187793573,
509035059085166018, 1071176160573816479, 2115432026610089700,
3925691963352022341, 6853294513073859630, 11266129211141121742,
17454698843693046407, 25505307844551837326, 35172169563389617239,
45797547548960471211, 56330082290098069195, 65468524173196415705,
71914624215592018826, 74671243825552686388, 73292765675007905651,
68001993326895424179, 59631707476231518911, 49411792162802982783,
38676208214646507895, 28584945063602478482, 19938274802884300793,
13116714709717265237, 8132639200776732766, 4748278261200713338,
2608024858933092322, 1346074794408997564, 652006213752455743,
295956138898867441, 125683998661458955, 49842381651879601,
18418955705334457, 6327555809439679, 2015233315978833,
593168628408153, 160782910480936, 39968340729272, 9068194179784,
1867271369048, 346638007264, 57550022756, 8461928362, 1088598639,
120646033, 11286483, 866713, 52461, 2347, 69, 1, 0, 0}

15 :
■8x9マスで宝マックス72個テーブルも一瞬で表示

同等☆

Table[sum[C(2n-1-3C(0,n-28)-3C(1,n-26)-3C(1,n-24)-8C(0,n-23)-8C(1,n-21)-15C(0,n-20),k-2),{n,20,35}],{k,1,72}]+Table[C(71,k-1)+C(1,k),{k,1,72}]

{2, 87, 3295, 78607, 1362299, 18460078, 204473689, 1907116083, 15299719813, 107274376311,
665613316422, 3691399441605, 18447776156424, 83642334863742, 346035607900560,
1312638938412806, 4584809892945575, 14798849190259082, 44283503920739404,
123188383908980963, 319353810087020272, 773186685811315639, 1751591017389233568,
3719181606403019809, 7412653767304185445, 13886128424486382893,
24477720915701752696, 40642683785697114854, 63620630278918684964,
93961096384315847204, 131013012205871839238, 172557237876989179559,
214781731322670114329, 252731141418076935138, 281209274772956576193,
295926350847761236653, 294548347126207473781, 277298087576831730532,
246896780442822393205, 207866926373152892934, 165440348653912344087,
124431016360680033348, 88399759656981333882, 59288415686663225877,
37514631338865127956, 22377473721141027910, 12572352774184755184,
6646249228402815124, 3302093433054131533, 1539874630017375451,
673008134822102446, 275211143609823985, 105099248767176058,
37401623133599593, 12373255757373154, 3794739201203181,
1075517359850959, 280687932668752, 67172923268624, 14670008286928,
2907185390840, 519288075532, 82935807842, 11727724279, 1450536738,
154505482, 13886622, 1024096, 59502, 2554, 72, 1}

16 :
しかも誤差を修正済み

いやぁ、この出力は圧巻ですね
Haskell先生もびっくり
しかし誤差あり

17 :
宝箱問題、
もとの 4x3 型の12部屋で宝箱の数を変えてみると
1と8以上で有利不利無し、それ以外は長軸優先有利となるな
初見での印象よりも随分奥深いなこれ

計算式お願いする

プログラムで計算したので式はなんとも

4x5だと宝箱を増やすと途中で短軸有利から長軸有利に
変わっちゃうので自分でもびっくりした

18 :
n=8くらいまでならマスのサイズを固定した場合、
宝を1からマックスまで変化させるロジックは完全に解明された

19 :
□■■■■■■■■
□□★■■■■■■
□□□★■■■■■
□☆□□★■■■■
□□□□□■■■■
□□☆□□□■■■
□□□□□□□■■
□□□☆□□□□■

{69, 67, 65, 63, 61, 59, 57, 56, 52, 50, 48, 46, 44, 43, 42, 37, 35, 33, 32, 31, 30, 24, 23, 22, 21, 20, 15, 14, 13, 12, 8, 7, 6, 3, 2}

35項目、合計1210

8x9マス長軸は三角数の位置2 6 12 20 30 42 56で1上がっている
つまり、最大マスから一回りづつ小さいマスの総数は全て数える

8x9マスでは8(8+1)/2-1=35 35項

>>4[8,] 1259 1210 87 から合計1210

20 :
8 * 9 [2] : 1259 , 1210 , 87
8 * 9 [3] : 28901 , 27444 , 3295
8 * 9 [4] : 487245 , 462938 , 78607
8 * 9 [5] : 6460920 , 6168325 , 1362299
8 * 9 [6] : 70274262 , 67504568 , 18460078
8 * 9 [7] : 645084445 , 623551570 , 204473689
8 * 9 [8] : 5101533131 , 4960367131 , 1907116083
8 * 9 [9] : 35303844988 , 34509440319 , 15299719813
8 * 9 [10] : 216412209627 , 212525346318 , 107274376311
8 * 9 [11] : 1186682990705 , 1169989129225 , 665613316422
8 * 9 [12] : 5867639936202 , 5804244923649 , 3691399441605
8 * 9 [13] : 26336848147168 , 26122841703128 , 18447776156424
8 * 9 [14] : 107913286582509 , 107268699582069 , 83642334863742
8 * 9 [15] : 405577089880106 , 403841343528838 , 346035607900560
8 * 9 [16] : 1403922286907797 , 1399743796844505 , 1312638938412806
8 * 9 [17] : 4491874681282838 , 4482908439962531 , 4584809892945575
8 * 9 [18] : 13325129660655316 , 13308110914669040 , 14798849190259080
8 * 9 [19] : 36749474808714576 , 36721381656941040 , 44283503920739408
8 * 9 [20] : 94449719219262544 , 94410951895703376 , 123188383908980944
8 * 9 [21] : 226689450187793600 , 226649637879721216 , 319353810087020288
8 * 9 [22] : 509035059085166144 , 509020882643576960 , 773186685811315328
8 * 9 [23] : 1071176160573816448 , 1071238534080555904 , 1751591017389233920
8 * 9 [24] : 2115432026610089728 , 2115648029075918592 , 3719181606403020288
8 * 9 [25] : 3925691963352023040 , 3926156660554725888 , 7412653767304184832
8 * 9 [26] : 6853294513073858560 , 6854100615782599680 , 13886128424486381568
8 * 9 [27] : 11266129211141124096 , 11267338149222707200 , 24477720915701743616
8 * 9 [28] : 17454698843693041664 , 17456312814286665728 , 40642683785697116160
8 * 9 [29] : 25505307844551831552 , 25507254963487424512 , 63620630278918684672
8 * 9 [30] : 35172169563389628416 , 35174310810267590656 , 93961096384315801600

21 :
■8x9マス長軸テーブル外せば出力可能

sum[C(2n-1+C(0,3mod n)+C(0,n-6 mod15)+C(0,n-10 mod18)+C(0,n-15)-C(0,n-5 mod22)-3C(0,n-9)-3C(1,n-13)-7C(0,n-20)-C(1,n-23)-C(1,n-25),k-1),{n,1,35}],k=16

1399743796844505

>>20
8 * 9 [16] : 1399743796844505

22 :
k=26,    6854100615782599621

8 * 9 [26] : 6854100615782599680

23 :
Table[sum[C(2n-1+α,k-1),{n,1,a}],{k,1,b}]

a=n(n+1)/2-1 
b=n(n+1)

を満たす差分追尾数列αを見つけてくれ〜(・ω・)ノ

24 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

25 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

26 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

27 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

28 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

29 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

30 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

31 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

32 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

33 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;l

34 :
※前スレ

■初等関数研究所■
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/

35 :
2 3 6 7 9
2 3 6 7 8 12 13 15 17
2 3 6 7 8 12 13 14 16 20 21 23 25 27
2 3 6 7 8 12 13 14 15 20 21 22 24 26 30 31 33 35 37 39
2 3 6 7 8 12 13 14 15 20 21 22 23 25 30 31 32 34 36 38 42 43 45 47 49 51 53

長軸choose数え上げ

36 :
□■■■■■■■■■■■■■■
□□■■■■■■■■■■■■■
□□□■■■■■■■■■■■■
□□□□■■■■■■■■■■■
□□□□□■■■■■■■■■■
□□□□□□■■■■■■■■■
□□□□□□□■■■■■■■■
□□□□□□□□■■■■■■■
□□□□□□□□□■■■■■■
□□□□□□□□□□■■■■■
□□□□□□□□□□□■■■■
□□□□□□□□□□□□■■■
□□□□□□□□□□□□□■■
□□□□□□□□□□□□□□■

37 :
2n x 2n の正方形を
1 x 2 のドミノで埋める場合の数を考えます

たとえば、2x2の正方形を1x2のドミノで埋める場合の数は、2通りです

4x4の正方形を1x2のドミノで埋める場合の数は、36通りです

一般に、n=0,1,2,3,,,,のとき、
1, 2, 36, 6728, 12988816, 258584046368,,,
となり、一般項は、

Π[j=1 to n]Π[k=1 to n]{4cos^2 πj/(2n+1)+4cos^2 πk/(2n+1)}

となるようなのですが、
どのようにその公式が導かれるのでしょうか?

38 :
wikipedia
https://en.wikipedia.org/wiki/Domino_tiling
によると
Temperley & Fisher (1961) and Kasteleyn (1961)
によって独立に発見されたとある
多分元論文は
Temperley, H. N. V.; Fisher, Michael E. (1961),
"Dimer problem in statistical mechanics-an exact result",
Philosophical Magazine, 6 (68): 1061-1063, doi:10.1080/14786436108243366

Kasteleyn, P. W. (1961), "The statistics of dimers on a lattice. I.
The number of dimer arrangements on a quadratic lattice", Physica,
27 (12): 1209-1225, Bibcode:1961Phy....27.1209K, doi:10.1016/0031-8914(61)90063-5.

原論文読むのが早い

39 :
これに証明載ってるかも
https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/098/38098203.pdf?r=1&r=1

Section2
A famous result of Kasteleyn [8] and Temperley and Fisher [18] counts the
number of domino tilings of a chessboard (or any other rectangular region).
In this section we explain Kasteleyn's proof.


「ドミノによるタイル張り」(京大・理) 36p.
http://www.ms.u-tokyo.ac.jp/~kazushi/proceedings/domino.pdf

「長方形領域のドミノタイル張りについて」(青学大・理工) 17p.
http://www.gem.aoyama.ac.jp/~kyo/sotsuken/2010/fujino_sotsuron_2010.pdf

40 :
■ドミノタイリング
https://ja.wikipedia.org/wiki/%E3%83%89%E3%83%9F%E3%83%8E%E3%82%BF%E3%82%A4%E3%83%AA%E3%83%B3%E3%82%B0

■Die Kasteleyn-Fisher-Temperley-Formel fur die Anzahl der Domino ...
http://oops.uni-oldenburg.de/1773/1/Bachelorarbeit%20von%20Ina%20Lammers.pdf

41 :
■平面充填(へいめんじゅうてん)

平面内を有限種類の平面図形(タイル)で隙間なく敷き詰める操作である
敷き詰めたタイルからなる平面全体を平面充填形という

平面敷き詰め、タイル貼り、タイリング (tiling) 、テセレーション
(tessellation) ともいう
ただし「平面」を明言しない場合は、曲面充填や、
場合によっては2次元以外の空間の充填を含む
広義のテセレーション等については、空間充填を参照
平面充填は広義の空間充填の一種で、2次元ユークリッド空間の
充填である

多面体は多角形による球面充填(曲面充填の一種)と
考えることができる
そのため、多角形による平面充填は多面体と共通点が多く、
便宜上多面体に含めて論じられることもある

42 :
ルジンの問題(Luzin - のもんだい)とは、
正方形に関してニコライ・ルジン (Nikolai Luzin) が考えた問題である

「任意の正方形を、2個以上の全て異なる大きさの正方形に分割できるか」
という問題であり、ルジンはこの問題の解は存在しないと予想したが、
その後幾つかの例が発見された

2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50 の
計21枚の正方形

43 :
Table[C(0,n-2 mod18)+3C(0,n-4)+3C(1,n-7)+7C(0,n-11)+C(1,n-16)+C(1,n-18),{n,1,27}]

{0, 1, 0, 3, 0, 0, 3, 3, 0, 0, 7, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}

こういう数列を簡単に作る方法は?

44 :
Table[{1-n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)(n-8)(n-9)(n-10)(n-11)(n-12)/13!}/4,{n,0,13}]

Table[(1-C(0,n-13))/4,{n,0,13}]

同じ出力で遥かに式を短くできる

45 :
56を2進法表記で桁をリストアップし,
リスト長が8になるようにリストの左側にゼロを足し加える:

In[3]:=IntegerDigits[56, 2, 8]

Out[3]={0,0,1,1,1,0,0,0}

46 :
FromDigits[{1,0,1,0,0,1,0,0,0}, 2]

328

Table[2n-1,{n,1,9}]+IntegerDigits[328, 2, 9]

{2, 3, 6, 7, 9, 12, 13, 15, 17}

47 :
3を法としたときの剰余:

Mod[{1, 2, 3, 4, 5, 6, 7}, 3]

{1,2,0,1,2,0,1}

48 :
2進値リストからもとの数を再生する:

IntegerDigits[56, 2, 8];

FromDigits[%, 2]

49 :
a_n=1/4((-1)^n-(1+2i)(-i)^n-(1-2i)i^n+9)

1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2,

50 :
『与えられた数より小さい素数の個数について』

Chu-Vandermonde identity

51 :
n個のものからk個取り出す場合の数と

k個取り残す場合の数は等しい
          

C(n,k)=C(n,n-k)

52 :
■平方完成

y=ax^2-(-a+2)x-a-a+2
=a(x^2-(-a+2)x/a)-a-a+2
=a{(x-(-a+2)/(2a))^2-(-a+2)^2/(4a^2)}-a-a+2
=a(x-(-a+2)/(2a))^2-(-a+2)^2/(4a)-a-a+2
=a(x-(-a+2)/(2a))^2-(-a+2)^2/(4a)-2a+2
=a(x-(-a+2)/(2a))^2-(a^2-4a+4)/(4a)-2a+2
=a(x-(-a+2)/(2a))^2-(a^2-4a+4)/(4a)-(8a^2)/(4a)+(8a)/(4a)
=a(x-(-a+2)/(2a))^2-(a^2-4a+4+8a^2-8a)/(4a)
=a(x-(-a+2)/(2a))^2-(9a^2-12a+4)/(4a)

53 :
トランプの束がある
2〜10までの数字が描かれたカードが各スートに1枚ずつと、
ジョーカーのカードが24枚ある
全てを混ぜて無作為に切り直して12枚のカードを無作為に引いたとき
その12枚のカードのうちジョーカー以外にいずれも違う数字が
書かれている確率はいくらか

Sum[choose(24,k)*choose(9,12-k)*4^(12-k),{k,3,12}]/(choose(60,12))

Sum[C(24,k)C(9,12-k)4^(12-k),{k,3,12}]/(C(60,12))

出力 7371811052/66636135475

54 :
FromDigits[{1,0,1,0,0,1,0,0}, 2]

164

55 :
ガンマ関数とベータ関数
https://lecture.ecc.u-tokyo.ac.jp/~nkiyono/2006/miya-gamma.pdf

56 :
第一種の合流型超幾何関数(クンマー)

1F1[a; b; z] = 1+Σ[k=1, ∞] {a(a+1)・・・・(a+k-1)/b(b+1)・・・・(b+k-1)} z^k/k!

1F1[-n; -2n; z] = {n!/(2n)!} Σ[k=0, n] {(2n-k)!/(n-k)!k!} z^k

57 :
ブリストル大学の数学者Andrew Booker氏が、
33を3つの立方数の合計で表すこと、すなわち
33=x^3+y^3+z^3という方程式の解を求めることに成功した

(8866128975287528)^3+(-8778405442862239)^3+(-2736111468807040)^3=33

https://fabcross.jp/news/2019/20190507_33.html

58 :
Table[choose(17,k-1)+choose(15,k-1)+choose(13,k-1)+choose(11,k-1)+choose(10,k-1)+choose(8,k-1)+choose(5,k-1)+choose(4,k-1)+choose(1,k-1),{k,1,20}]

chooseを一つにした式に変形できますか?

三つならできた

短軸有利☆

Table[sum[C(2n-1+C(0,n-2)+C(1,n-4),k-1),{n,1,9}],{k,1,20}]

59 :
Table[C(0,n-2 mod4),{n,1,10}]

{0, 1, 0, 0, 0, 1, 0, 0, 0, 1}

60 :
長軸有利☆

Table[C(9,k-1)+C(7,k-1)+C(6,k-1)+C(3,k-1)+C(2,k-1),{k,1,12}]
Table[sum[C(2n-1+C(0,n-1)+C(0,n-3),k-1),{n,1,5}],{k,1,12}]
Table[sum[C(2n-1+C(0,3mod n),k-1),{n,1,5}],{k,1,12}]

{5, 27, 76, 140, 176, 153, 92, 37, 9, 1, 0, 0}

同じ出力で式が短くなってゆく

61 :
Table[C(0,2mod n),{n,1,10}]

{1, 1, 0, 0, 0, 0, 0, 0, 0, 0}

Table[C(0,3mod n),{n,1,10}]

{1, 0, 1, 0, 0, 0, 0, 0, 0, 0}

Table[C(0,4mod n),{n,1,10}]

{1, 1, 0, 1, 0, 0, 0, 0, 0, 0}

62 :
Table[C(0,5mod n),{n,1,10}]

{1, 0, 0, 0, 1, 0, 0, 0, 0, 0}

Table[C(0,6mod n),{n,1,10}]

{1, 1, 1, 0, 0, 1, 0, 0, 0, 0}

Table[C(0,7mod n),{n,1,10}]

{1, 0, 0, 0, 0, 0, 1, 0, 0, 0}

63 :
Table[C(0,8mod n),{n,1,10}]

{1, 1, 0, 1, 0, 0, 0, 1, 0, 0}

Table[C(0,9mod n),{n,1,10}]

{1, 0, 1, 0, 0, 0, 0, 0, 1, 0}

64 :
【即時】金券五百円分とすかいらーく券を即ゲット   
https://pbs.twimg.com/media/D9F0S6KUcAAk_1s.jpg 
     
1. スマホでたいむばんくを入手 iOS https://t.co/ik17bynKNT Android https://t.co/uxTzFEk2ee     
2. 会員登録を済ませる    
3. マイページへ移動する    
4. 紹介コード → 入力する [Rirz Tu](空白抜き)  
  
今なら更に16日23:59までの登録で倍額の600円を入手可
両方ゲットしてもおつりが来ます    
   
 数分で終えられるのでぜひお試し下さい       👀
Rock54: Caution(BBR-MD5:b73a9cd27f0065c395082e3925dacf01)


65 :
短軸有利☆

Table[C(9,k-1)+C(7,k-1)+C(5,k-1)+C(4,k-1)+C(1,k-1),{k,1,12}]

Table[sum[C(2n-1+C(0,n-2),k-1),{n,1,5}],{k,1,12}]

{5, 26, 73, 133, 167, 148, 91, 37, 9, 1, 0, 0}

k-1を一つにして式を短縮

66 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

67 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

68 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

69 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

70 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

71 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

72 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

73 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

74 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

75 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

76 :
>>64
ツイで見かけて既に貰ってる  

77 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

78 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

79 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

80 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

81 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

82 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

83 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

84 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

85 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

86 :
0qc3OXjXwBt1HD7Mt228BdYw7VinFEl43Zoc9tkhSu6hmEi1WEZ6OqB3FSe3k7L0qXrj8fNHrzBhhPTzD8WhAjrDXv1k55mQkf5uiOqjKuWUGgYFZuNZUagqAX9wNZzwaH4BlgoDtLscwycAwYQ7tuMa9CoGneWU5TXTTYEhxrUUJB0qmsR19UqgNcuwuN3oX8QyXNG
43bDtYxhwTZApiRugaYbzsFfDKZmuR212sTlb3HrYDe9jytaLBgeojHWZxPkzLDqO3djDHR4YEE7wySKMFA1WfilujRqD7izkWmcUWhFiRZrxFJAByshrPMNynEJEpGtdOg7Qx1jjMcB2nGphazIOhgkUuKFgGIiMh65hqcNYbtLdSVeTIncn2bR8pUncW95wGWymgC0
J8hGG9KXTgycc8wu65xqHO4p5z5oqxLBQRZuY5NdFK6pM1UaaUzIAlBvvWS49LKCsiIbUDX0KKFIWjAdkRpo4aZkTjXtlBABqjBeDgeH64Kv8QRCkv4NklJWJU6uagXQG8uqws2ZLhzyEs04D6ycyNc9s3LAeDaywG9mQ3jlBFhHE7ba2qlDJlN9ixypMXRleRQZWryk
5f1wRmcZzXXh9xqvyHtHqtXG06b6iQ5OhfrAUZwU8Scwkh52X7iNRot4vwSfMrmjYoGlVIvhK9djdlkiGy03ly9O6SmKKfkBYZJCK8zLNCJux0nBGVJWVe90kIjRFBTCjOfe11bfeVXfLUM9mLp0zyFrfY4a1dC7nS9pShB2iDxRGp6Vn2SlReeXnc6mqJ6KfhY9L8gR
G1SMJQYyXNSnrSkV2JyMHPsH4umT9610YnFgDQnLn67betRIHPmdDewhiu5kGTYKxytAxhC1qJPuOVRw5q7ZpELCBwYEixZs6kmHkla4fdAZ5HQw7xnySrJ28cGOloZuerh0QEG6xb3JxuzHxFGdBWtgEy5decyx9iZpMlo5QVT14hFNLnp0zlcAGUfEdxAMjUP3lHkv
UHzFXQXLWlU2JyYfOkcUjg40eeXu8e77qS4rgvjHWwxRbA1IKsNmn3CR9ePAuumjHnrWXeVuNStOENI4pHd7a7EwvoL8D7oenfbfeVoMT4Jho808YluyiYSEkfV5E6qPA5SiIWgl3G2zIc1NGsEW0nQuGTP504IXiRebMTKIEZyBdIqgQg1tOUYg7LzaYKiKixwj59ph
cILXg6ToA2TskeIlZraUTbzQ5PkR9lGnJjBFN7aSfv8vkCEpe9hYmrfF47H0RcNX5k3Y3i5xgHKhiNu5T8GeXfcYWpG6eLzIDAFy8DF39cqoofzCDnk8Ogt5q2H4cQNTgsDQDYYmFl2kKkYeX6CZ9LQruT8LprERVMyn0lUCYqfO4sQqWCu8kiVnpdZgd9QqdVcOT639
SDK4t8ql63OVBPRjJe2DvhC0BHjXErI2RCeGdMeBPD539aNqdFVIPGHN1NIVVDyTM4gfJbnFDgC5slKjSO17coT9jUfpOvezlHg9lXM95eftZiKzTx36T6C88TnssEI0tM3SKlDidfP9neTR3feD1cDGkYAzaPDCjyD4a2OcqNChan0XweFrq0xqQYc6Oi6am5DWfurQ
Kvr3idZa3OUlonClNyGyT3u2Xrtde47Cr6m4tG1j7AurlCjmUXvLPaQDQLlhymjaNIkWblKiKeVhk601XohEk7mNq3FyXjLGTJjx4csGI9MHt9vijbaaAQMFGIi8A28SQA1Ie3oELhvKeuLzK9ZYmGMEVqj4GtOgB719u1e1KHHqpfnGgwmMFMpRTjoTrEl4f9KFathh
kjasjfkajkljfklajjfjksdjksjalkjflkjasjfkjasjfkjajjs2333354994998989029929050295895028902802058299202095898582982092029209029029
sgssl;slg;ld;1

87 :
ComplexExpand[(1+E^(I(1+n)Pi)+2n)/4]

88 :
■連続投稿・重複

連続投稿・コピー&ペースト
連続投稿で利用者の会話を害しているものは削除対象になります
個々の内容に違いがあっても、荒らしを目的としていると判断したものは同様です
コピー&ペーストやテンプレートの存在するものは、アレンジが施してあれば
残しますが、全く変更されていない・一部のみの変更で内容の変わらないもの、
スレッドの趣旨と違うもの、不快感を与えるのが目的なもの、
などは荒らしの意図があると判断して削除対象になります


※お手数ですが削除依頼できる方お願いします<(_ _)>

89 :
■DoS攻撃(ドスこうげき)(英:Denial of Service attack)

情報セキュリティにおける可用性を侵害する攻撃手法で、
ウェブサービスを稼働しているサーバやネットワークなどの
リソース(資源)に意図的に過剰な負荷をかけたり
脆弱性をついたりする事でサービスを妨害する攻撃、
サービス妨害攻撃である

90 :
>>1は関係ないスレゴミを書き込むキチガイです。対応できるかたアクセス禁止をお願いします。

91 :
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/659-693
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/698-722
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/724-745
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/753-762
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/776-785
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/797-814
https://rio2016.2ch.sc/test/read.cgi/math/1560604951/24-33
https://rio2016.2ch.sc/test/read.cgi/math/1560604951/66-75
https://rio2016.2ch.sc/test/read.cgi/math/1560604951/77-86

数学板において連続大量レス投下によって

■初等関数研究所■
https://rio2016.2ch.sc/test/read.cgi/math/1549700978/

スレッドが機能不全に陥りました

他者の書き込みを妨害し、サーバー運営に多大な負荷をかけ
2ch掲示板において著しく公益性を損なう行為であるため
ここを巡回している運営の方々、厳重な対処をお願いします<(_ _)>

92 :
【ロビーのお約束】 削除の要件(禁止されること)

荒らし依頼・ブラクラの張付け等第3者に迷惑がかかる行為
アダルト広告・勧誘・悪質な掲示板宣伝などのアドレス等張りつけ
煽り・煽りに対する返答・叩き・誹謗中傷等(差別発言等含む)
コピペ・アスキーアート等必要以上の張り付け または
第3者に迷惑が掛かる行為や発言であった場合は削除対象にします

93 :
>>90
了解です。削除依頼出しておきます

94 :
math:数学[スレッド削除]
https://qb5.2ch.sc/test/read.cgi/saku/1356355525/

95 :
■掲示板・スレッドの趣旨とは違う投稿

レス・発言

スレッドの趣旨から外れすぎ、議論または会話が成立しないほどの
状態になった場合は削除対象になります
故意にスレッドの運営・成長を妨害していると判断した場合も同様です

■投稿目的による削除対象

レス・発言

議論を妨げる煽り、不必要に差別の意図をもった発言、
第三者を不快にする暴言や排他的馴れ合い、
同一の内容を複数行書いたもの、
過度な性的妄想・下品である、等は削除対象とします

96 :
>>93
おお、これは助かりまする

97 :
確率空間においては, A ∈ F を事象 (event) と呼ぶ.

98 :
100!中の二進数字の桁数を求める:

In[1]:=IntegerLength[100!, 2]

Out[1]=525

99 :
分数で表すと厳密な結果

小数で表すと近似になる

100 :
((-1)^n)(((-1)^n)n+n+4(-1)^n+2)/2

1 5 1 7 1 9 1 11 1 13 1 15 1 17 1

かなりエレガント☆


100〜のスレッドの続きを読む
フェルマーの最終定理証明したったwwww
小中学校範囲の算数・数学の問題のスレ Part 54
偶数である素数はただひとつであることを証明せよ
松坂君の日記
ようじょですpart3
統計学の分かりやすい本教えろください
遂に解かれた!AX+BY=CZ
独立研究者って
数学の本 第88巻
人工知能・機械学習のスレッド@数学板
--------------------
【大阪】宝石【サチコ】
【おみくじ】毎年恒例1月1日限定スレ【お年玉】
【DK3】DARK KINGDOM3 第76章
【シューゲイザー】Kαin #22【ネオアコ エレクトロニカ】
【バーチャルYoutuber】にじさんじ有ンチスレ10803【どーも。カルシウム足りてる?】
ドラゴンクエストウォーク114歩目
【騙りコテ】天鳳特上スレッド16本場【出禁】
【公共放送】NHKが番組で異例の放送「きちんと受信料を払っている人たちが不公平感を感じるから未払いの人もさっさと払ってね」★11
昭和48年(1973)生れの無職・だめPart73
【AKB48】指原莉乃応援スレ ルール議論
竹下らに私怨○年喪男と加藤らに私怨5年大阪婆検証
スロ板住民のゲーム配信66
【ハンギョレ】韓国政府「一日の新規感染者50人・感染経路不明患者5%」の目標提示 [4/6]
【平成しりとり】 Part.2
DE DE MOUSE☆Part3
競輪なんざガンガン潰そうぜ!
【6号機】戦コレ![泰平女君]徳川家康 21コレ【KONAMI】
【アンジュルム】勝田里奈のカッタリ〜ナ本スレPart182【さとのあかり 元エッグ りなぷ〜 ばくわら】
航空学生スレ17
【美月可哀想】26th廃棄選抜と山下美月の卒業説を流した某アカウントが、1か月前に遠藤さくらのnonno専属を当てていた件w
TOP カテ一覧 スレ一覧 100〜終まで 2ch元 削除依頼