TOP カテ一覧 スレ一覧 100〜終まで 2ch元 削除依頼
モンティーホール問題を高校生にわかるように説明してくれ
ユークリッド幾何学は中学・高校数学から撤廃すべき
面白い問題おしえて〜な 31問目
否定された インフレーション理論 ビッグバン理論
Inter-universal geometry と ABC予想 26
Putnam Examについて
現代数学の系譜11 ガロア理論を読む24
現代数学の系譜 工学物理雑談 古典ガロア理論も読む56
新井紀子スレッド
数学系YouTuberについて語れ。

フェルマーの最終定理の簡単な証明その2


1 :2020/06/07 〜 最終レス :2020/06/23
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

2 :
【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。

3 :
糞スレ

4 :
>3
糞スレ

どうしてでしょうか?

5 :
>>4
自明です。

6 :
妄想がただひたすら繰り返し主張されるクソスレ。

7 :
迷惑老人の棲家

8 :
>5
自明です。
どうしてでしょうか?

9 :
>6
妄想がただひたすら繰り返し主張されるクソスレ。
どの部分のことでしょうか?

10 :
>7
迷惑老人の棲家
なぜ、迷惑なのでしょうか?

11 :
【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。

12 :
前スレ>984一部訂正の上再掲
前スレ>976 日高
> >969
> > xが無理数の場合は、(5)で、考察しては、駄目でしょうか?
>
> だったらそれが言えるまで「x,y,zは自然数比とならない」とは言えないだろ。
>
> xが無理数の場合も、x,y,zの比は、かわりません。
それは誤り。
p=3の場合で書くと、フェルマーの最終定理に反例A^3+B^3=C^3があるとしたら、
(C-A)^3で両辺を割ることにより有理数a',b'に対しa'^3+b'^3=(a'+1)^3を得る。
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3となってx^3+y^3=(x+√3)には有理数比をなす無理数解がある。

13 :
>12
(a'√3)^3+(b'√3)^3=(a'√3+√3)^3
これは、有理数比をなす無理数解では、ありません。

14 :
>>8
自明とは、
証明したり説明したりしなくても、すでにそれ自体ではっきりしていること。
をいいます。

15 :
>14
自明とは、
証明したり説明したりしなくても、すでにそれ自体ではっきりしていること。
をいいます。

なにが、自明でしょうか?

16 :
>>15
このスレが糞スレであることです。

17 :
> 13 日高
> >12
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
>
> これは、有理数比をなす無理数解では、ありません。

なぜですか?

18 :
>16
このスレが糞スレであることです。

どうしてでしょうか?

19 :
>17
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
>
> これは、有理数比をなす無理数解では、ありません。

なぜですか?

有理数比をなしますが、両辺が、等しくなりません。

20 :
>>18
自明です。

21 :
前スレ
627 名前:日高[] 投稿日:2020/05/30(土) 16:50:57.17 ID:vaCddZD8 [34/51]
>624
C^3+D^3=(C+1)^3 (C,Dは自然数)
が成り立ちます。
C,Dが自然数で成り立ちます。
C,Dが自然数のとき、両辺は、等しくなりません。

22 :
>>19 日高
> >17
> > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
> >
> > これは、有理数比をなす無理数解では、ありません。
>
> なぜですか?
>
> 有理数比をなしますが、両辺が、等しくなりません。
なぜ等しくなりませんか?

23 :
>22
> > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
なぜ等しくなりませんか?

(a'√3)^3+(b'√3)^3=(a'√3+√3)^3は、
(a')^3+(b')^3=(a'+1)^3となります。
(5)により、
r=1のとき、a',b'が、整数比とならないからです。

24 :
【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。

25 :
>>23 日高
> >22
> > > (a'√3)^3+(b'√3)^3=(a'√3+√3)^3
> なぜ等しくなりませんか?
>
> (a'√3)^3+(b'√3)^3=(a'√3+√3)^3は、
> (a')^3+(b')^3=(a'+1)^3となります。
> (5)により、
> r=1のとき、a',b'が、整数比とならないからです。

(5)は式です。この式からなぜ整数比とならないことが言えますか?

26 :
>25
(5)は式です。この式からなぜ整数比とならないことが言えますか?

(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
からです。

27 :
>>10
> >7
> 迷惑老人の棲家
>
> なぜ、迷惑なのでしょうか?
他人が迷惑だと感じることをやるから。
迷惑だと言われた書き込みを繰り返すから。

28 :
>27
迷惑だと言われた書き込みを繰り返すから。
あなた以外には、言われていないと、思います。

29 :
>>26 日高
いま、x^3+y^3=(x+√3)^3…(3)に自然数比をなす無理数解があるかどうかを論じている。
日高の主張は、これを満たす自然数比をなす有理数解がないことをもってそれが言えたとし、
自然数比の無理数解の場合は(5)にゆだねる。そして(5)の証明は(3)に帰着させるという。
見え透いた循環論法です。
私があげた例はフェルマーの最終定理に反例があったと仮定して構成したものですが、
これにまったく反論できていません。

30 :
>29
見え透いた循環論法です。
なぜ、循環論法になるのでしょうか?

31 :
>>30 日高
証明を書くときにごまかさないで、たとえば>>1の証明の5行目なら、
「(3)はrが無理数なので、xを有理数とするとzは無理数となり、『xが有理数ならば』解は整数比とならない」
と正しくことばを補って書くことです。
まずはそのようにして証明を書き直してください。

32 :
http://rio2016.2ch.sc/test/read.cgi/math/1589674835/の977について
> x,y,zの比が、同じときに成り立ちます。
p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=10,y=24,z=26のとき: r^(p-1)=pは成り立ちません
p=2,x=10,y=24,z=26のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=5π,y=12π,z=13πのとき: r^(p-1)=pは成り立ちません
p=2,x=5π,y=12π,z=13πのとき: a=2のとき、r^(p-1)=apが成り立ちません。
以上より、「x,y,zの比が、同じときに必ず成り立つ」、は間違いです。
また、「x,y,zの比が、同じで、さらにほかの条件が満たされた時、成り立つ」としても
他の条件について何も書いていないので、証明として間違いです。
r^(p-1)=pもr^(p-1)=apも成り立たないときのことが書いていないので、
>>1-2の証明は間違いです。

33 :
>31
まずはそのようにして証明を書き直してください。
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
xが、無理数で、整数比となる場合は、以下のようになる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

34 :
>>33
> (3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。

書き足してないじゃありませんか。

35 :
>32
以上より、「x,y,zの比が、同じときに必ず成り立つ」、は間違いです。

p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。

p=2,x=5/4,y=12/4,z=13/4のとき: r^(p-1)=pは成り立ちます。
p=2,x=5/2,y=12/2,z=13/2のとき:a=2のとき、r^(p-1)=apが成り立ちます。
x,y,zの比は、同じです。

36 :
>34
書き足してないじゃありませんか。

「以下の行」を読めばわかると思います。

37 :
>>36 日高
> >34
> 書き足してないじゃありませんか。
>
> 「以下の行」を読めばわかると思います。

そうやって自分をごまかしているから循環論法に気づかないんですよ。

38 :
>>35

数学の証明の中で何の断りもなく3つの数の組5,12,13を別の数の組5/4,12/4,13/4に変えてはいけません。

数学のルールを守る気がないのなら、数学をやる気がないのなら、掲示板に書くのをやめてください。

迷惑です。

39 :
https://youtu.be/KDODcURlj2w

完全に証明?した人が現れたぞ

40 :
>>28
> >27
> 迷惑だと言われた書き込みを繰り返すから。
>
> あなた以外には、言われていないと、思います。
思い込みで勝手に全て俺のせいにするな。

41 :
>37
そうやって自分をごまかしているから循環論法に気づかないんですよ。
循環論法になっている部分は、どこでしょうか?

42 :
>38
数学の証明の中で何の断りもなく3つの数の組5,12,13を別の数の組5/4,12/4,13/4に変えてはいけません。
比が、同じということを、言っています。変えているわけでは、ありません。

43 :
>39
完全に証明?した人が現れたぞ
なにを、証明したのでしょうか?

44 :
【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。

45 :
>>42
> 変えているわけでは、ありません。
変えてないんだったら
p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
p=2,x=5,y=12,z=13のとき: r^(p-1)=pも成り立たない、a=2のとき、r^(p-1)=apも成り立たないということが実際に起こっている
しかし証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
よって>>1-2の証明は間違いです

46 :
>45
しかし証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない

必要でしょうか?

証明には、持つと、書いているので、持たない場合もあります。

47 :
>>46

あなたの証明したいのは>>44でなく>>1でしょう?

>>1は落書きなのでどうでもいい、というなら必要ありません。

数学の掲示板に落書きをしないでください。迷惑です。

48 :
>>41 日高
> 循環論法になっている部分は、どこでしょうか?

不要な部分はカッコに入れます。二重カギカッコが補った部分です。

>>33 日高
> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。

(> (1)の両辺をr^pで割って、両辺を積の形にすると、)
(> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。)

> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。

「(3)はrが無理数なので、xを有理数とするとzは無理数となり、『xが有理数ならば』解は整数比とならない」が正しいです。

> xが、無理数で、整数比となる場合は、以下のようになる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
> (5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。

ここで「(3)の解の」と書いていますが「(3)の無理数解の」です。
なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
だから整数比とならないかどうかはわかりません。
(循環論法というよりは、不完全な論法でした。)

以下、引用は略します。

ゆえに証明は大間違いです。

49 :
>47
>>1は落書きなのでどうでもいい、というなら必要ありません。

数学の掲示板に落書きをしないでください。迷惑です。

1は落書きでは、ありません。

50 :
>>49
そうですか。それでは
証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
よって>>1-2の証明は間違いです

51 :
>>49 日高
> 1は落書きでは、ありません。
そういう割には、指摘されてもいっこうに直さないね。

52 :
>48
なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
意味を、教えて下さい。
p=3,a=3,r=3のとき、両辺は、等しくなります。

53 :
>>52 日高
> >48
> なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
>
> 意味を、教えて下さい。
> p=3,a=3,r=3のとき、両辺は、等しくなります。
無理数の意味がわからないのですか?

54 :
>50
証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
r^(p-1)=pもr^(p-1)=apも成り立たない時、とはどういう意味でしょうか?

55 :
>51
そういう割には、指摘されてもいっこうに直さないね。
どの部分を、直せば、良いのでしょうか?

56 :
>53
無理数の意味がわからないのですか?
どういう意味でしょうか?

57 :
【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。

58 :
>>54 日高
> >50
> 証明にはr^(p-1)=pもr^(p-1)=apも成り立たない時のことが書いてない
>
> r^(p-1)=pもr^(p-1)=apも成り立たない時、とはどういう意味でしょうか?
r^(p-1)=apと書いたらこの式でaを定義すると思い込んでいやしないかい?

59 :
>>54
http://rio2016.2ch.sc/test/read.cgi/math/1591485843/の32に書きました。
もう一度同じことを書きますが、同じことを何度も何度も書く行為は掲示板への嫌がらせ行為なので、次からは自分でみてください。
他人に、掲示板への嫌がらせ行為を強要するようなことをしないでください。
> p=2,x=5,y=12,z=13のとき: r^(p-1)=pは成り立ちません
> p=2,x=5,y=12,z=13のとき: a=2のとき、r^(p-1)=apが成り立ちません。
> p=2,x=10,y=24,z=26のとき: r^(p-1)=pは成り立ちません
> p=2,x=10,y=24,z=26のとき: a=2のとき、r^(p-1)=apが成り立ちません。
> p=2,x=5π,y=12π,z=13πのとき: r^(p-1)=pは成り立ちません
> p=2,x=5π,y=12π,z=13πのとき: a=2のとき、r^(p-1)=apが成り立ちません。
x^p+y^p=z^pの解には、r^(p-1)=pもr^(p-1)=apも成り立たないものがある。
r^(p-1)=pもr^(p-1)=apも成り立たない場合を調べていないので、>>1-2の証明は間違いです。

60 :
>>55 日高
> >51
> そういう割には、指摘されてもいっこうに直さないね。
>
> どの部分を、直せば、良いのでしょうか?

>>48は読んだ?

61 :
>>52 日高
> >48
> なぜならa^{1/(p-1)}=r/p^{1/(p-1)}は無理数だから。
>
> 意味を、教えて下さい。
> p=3,a=3,r=3のとき、両辺は、等しくなります。

と書いているでしょう? 等しくなるかどうかではなく両辺が無理数であることを指摘しました。

もしかして「式1=式2は無理数」という言い方が初めてですか?
「式1=式2」であることと,その値が無理数であることを同時に言うやり方です。

62 :
>>28
> >27
> 迷惑だと言われた書き込みを繰り返すから。
>
> あなた以外には、言われていないと、思います。
嘘つきが。

63 :
修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

64 :
まだやってんのかよw
もう2年たったか?w

65 :
>58
r^(p-1)=apと書いたらこの式でaを定義すると思い込んでいやしないかい?

r^(p-1)=apから、aは、定義できます。

66 :
>59
他人に、掲示板への嫌がらせ行為を強要するようなことをしないでください。

どういう意味でしょうか?

67 :
>60
>>48は読んだ?
読みましたが、わかりません。

68 :
>61
もしかして「式1=式2は無理数」という言い方が初めてですか?
「式1=式2」であることと,その値が無理数であることを同時に言うやり方です。
よく、わかりません。

69 :
>62
嘘つきが。
どうしてでしょうか?

70 :
>64
まだやってんのかよw
もう2年たったか?w
そうですね。

71 :
【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。

72 :
【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。

73 :
>>69

> >62
> 嘘つきが。
>
> どうしてでしょうか?
嘘つきだから。

74 :
>>63 日高
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
直っていませんね。もはや見込み薄。

75 :
>74
直っていませんね。もはや見込み薄。

よく、意味がわかりません。

76 :
修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

77 :
ここまでくると付き合ってあげてる人は相当な物好きだね

78 :
何とかして迷いを晴らしてやりたい。その一心だと思う。

79 :
有理数にはならないですよ

80 :
>77
ここまでくると付き合ってあげてる人は相当な物好きだね

どういう意味でしょうか?

81 :
>>79
kwsk

82 :
高木さんは樹海で植樹してるようなものだと思いますがね

83 :
>78
何とかして迷いを晴らしてやりたい。その一心だと思う。

どういう意味でしょうか?

84 :
>79
有理数にはならないですよ

どういう意味でしょうか?

85 :
>81
kwsk

どういう意味でしょうか?

86 :
>82
高木さんは樹海で植樹してるようなものだと思いますがね

どういう意味でしょうか?

87 :
修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

88 :
【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。

89 :
3にはなりえないのです
しかも無理数なんですよ
n3やy6など出てこないんです計算すると
つまり無駄足を踏んでいるんです
>>39の動画の本人です
動画で答えは言ってありますよ

90 :
>89
動画で答えは言ってありますよ

動画は、見ていません。

91 :
この動画はフェルマーの最終定理とは関係ありません。

92 :
>>87 日高

> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺をr^pで割って、両辺を積の形にすると、
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。

何度も言っているように、(2)の形に展開して戻すのは無駄。
r^(p-1)=pをみたすrをρと書く。(3)はx^p+y^p=(x+ρ)^p。

> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。

ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『x,y,zが有理数ならば』解は整数比とならない」
である。

> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。

この展開も無駄。

> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。

ここでaの定義がないがr^(p-1)=apで定義するのだとすると(ap)^{1/(p-1)}=rである。
(5)は(1)と何ら変わらない。

> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。

a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
解はただ一つに決まるわけではないので「(5)の解をρ倍すると(3)の解になる」が正しいが。
ここで「整数比とならない」と言えるのはmρ,nρが有理数の場合のみ。
しかしm,nは有理数,ρは無理数だからそういう場合はありえない。何も言えていない。

> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

完全な誤りです。

93 :
>92
ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『x,y,zが有理数ならば』解は整数比とならない」
である。

この部分の、意味が理解できません。

94 :
>>93 間違えたので書き直します。すみません。

95 :
>>92 書き間違えたので書き直します。間違いはわずかですが。

>>87 日高

> 【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
> 【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
> (1)の両辺をr^pで割って、両辺を積の形にすると、
> r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
> (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。

何度も言っているように、(2)の形に展開して戻すのは無駄。
r^(p-1)=pをみたすrをρと書く。(3)はx^p+y^p=(x+ρ)^p。

> (3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。

ここは正しくは
「(3)はxが有理数の場合、r(ρ)が無理数なので、zは無理数となり、『xが有理数ならば』解は整数比とならない」
である。

> (3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
> 両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
> (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。

この展開も無駄。

> (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。

ここでaの定義がないがr^(p-1)=apで定義するのだとすると(ap)^{1/(p-1)}=rである。
(5)は(1)と何ら変わらない。

> m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。

a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
解はただ一つに決まるわけではないので「(5)の解をρ倍すると(3)の解になる」が正しいが。
ここで「整数比とならない」と言えるのはmρが有理数の場合のみ。
しかしmは有理数,ρは無理数だからそういう場合はありえない。何も言えていない。

> ∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

完全な誤りです。

96 :
>>87

「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」とき、rは必ず無理数である
rが無理数の時、xとzのどちらか、あるいは両方が、必ず無理数である
「条件3:無理数と整数比になる」数は、必ず無理数である
よって、「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」とき、「条件3:無理数と整数比になる」数x,y,zは、必ず無理数である

つまり、「条件1:pが奇素数」で、「条件2:r^(p-1)=pが成り立つ」ときで、「条件3:無理数と整数比になる」とき、「(3)はxが有理数の場合」は絶対に起こらないので

(3)は必ず「(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)」になる。

このとき(3)の解はmr,nr,mr+rとなり、定義より整数比である。

よって>>87の証明は間違いです。

97 :
>95
a^{1/(p-1)}=r/p^{1/(p-1)}だから「(5)の解は、(3)の解の1/p^{1/(p-1)}倍」の誤りだろう。すなわち1/ρ倍。
この部分が、理解できません。

98 :
>96
このとき(3)の解はmr,nr,mr+rとなり、定義より整数比である。
mr,nr,mr+rは、整数比ですが、(3)の解には、なりません。

99 :
修正1
【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はxが有理数の場合、rが無理数なので、zは無理数となり、解は整数比とならない。
(3)のxが無理数で、整数比となる場合は、(mr)^p+(nr)^p=(mr+r)^pとなる。(m,nは有理数、rは無理数)
両辺をr^pで割ると、m^p+n^p=(m+1)^pとなる。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
m^p+n^p=(m+1)^pは、(5)となるが、(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。

100 :
【定理】p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺をr^2で割って、両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yを有理数とするとxは有理数となり、解は整数比となる。
∴p=2のとき、x^2+y^2=z^2は、整数比の解を持つ。


100〜のスレッドの続きを読む
数学 難易度総合ランキング(偏差値)
遂に解かれた!AX+BY=CZ
現代数学って結局役に立たないじゃん
「増田哲也→猫◆→狢◆→狸◆」 次は!?
現代数学の系譜 カントル 超限集合論
ようじょですpart4
数学 難易度総合ランキング(偏差値)
経済学は数学を誤用している
フェルマーの最終定理の簡単な証明7
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77
--------------------
扶桑薬品ってどうよ?
【NTS111】株式会社 西無線研究所 Part17【NTS115】
○■(´-`).。oO 第122話○■
【本スレ】ザ・コインロッカーズ/THE COINLOCKERS ★12
【PS4/PSVITA】実況パワフルプロ野球2018 Part29
【んー】山梨のおすし Part2【にゃー】
【RISS】情報処理安全確保支援士 Part22【ワッチョイ有り】
(((ドイツ製,フランス製レンズの実力とデジカメ)))
SDカードが使えるプレーヤー専用スレ7
なぜネトウヨは在日や資本家等悪者が居て、それを倒せば全部解決するという単純な話を信じるか?世の中そんな単純なもんじゃないよ [257926174]
【原発】原発情報3968【放射能】
オセロ対局
コンバイン、操作できず。コンバイン、操作できず。 [792523236]
【福岡】CRUiSE!くる〜ず part10
●●○デパススレッドVer.158○●●
ぬいぐるみ療法・22匹目
三菱DVD専用スレ 2枚目
佐倉綾音 90ねる
■FINAL FANTASY XII〜FF12総合スレッド〜ver.726■
マクスの在庫状況を報告するスレ 326箱目
TOP カテ一覧 スレ一覧 100〜終まで 2ch元 削除依頼